
Shared Memory via Execution Migration
Mieszko Lis Keun Sup Shim Omer Khan Srinivas Devadas

Massachusetts Institute of Technology, Cambridge, MA, USA

I. BACKGROUND

The large-scale multiprocessor era started with supercom-
puters: vast numbers of single-chip microprocessors linked
by an off-chip network and clusters of servers connected
by even slower system-level networks. Their substantial cost
and special-purpose application justified the complexity and
expense of carefully designing applications using message-
passing among processors with private memories: whoever
could afford a supercomputer could certainly pay for the
programmers needed to optimize the few applications the
system was bought to run.

Today’s single-die multicores, on the other hand, are within
anyone’s reach: GPUs already have hundreds of cores, general-
purpose multicores with 64+ cores are available, and power
constraints portend a massive-multicore future. Shared mem-
ory is key to programming of these systems: without this ab-
straction, GPGPUs, although successful in niche applications,
have yet to find wide and general-purpose applicability.

Traditionally, the shared memory illusion has been pre-
served either by ensuring that the individual private caches
hold the same values for any shared addresses via directory-
based cache-coherence (CC) protocols or by dividing the
address space among caches so that data are never shared
and remote accesses (RA) are required to access addresses
assigned to non-local caches. Neither approach, however, is
perfect, and as the number of cores on a die grows into the
hundreds, their problems will only worsen.

Most CC protocols blindly make a local copy of a cache
line whenever it is read. Although this makes accessing shared
read-only data efficient, it also reduces the effective on-chip
cache capacity, since data cached in multiple caches leave less
space for other data. This, in turn, leads to significantly higher

0.0%	
1.0%	
2.0%	
3.0%	
4.0%	
5.0%	
6.0%	
7.0%	
8.0%	
9.0%	
10.0%	

16	 32	 64	 128	

Ca
ch
e	
hi
er
ar
ch
y	
m
is
s	
ra
te
	

Per-‐core	 L2	 cache	 (KB)	

CC	 RA	

Fig. 1. Average SPLASH-2 [1] cache miss rates for various cache sizes
show that duplication of shared data under CC significantly increases cache
miss rates vs. RA, which does not replicate data in multiple caches. (256 x86
cores with a 16KB L1, average over the SPLASH-2 applications).

cache miss rates (Figure 1); these must be handled by off-
chip memory accesses or cache-to-cache transfers, which incur
delays of hundreds of cycles. As core and thread counts grow,
this will only worsen: not only does the impact on on-chip
cache capacity increase with the number of sharers, but the
much more frequent off-chip accesses will contend for the
same limited off-chip bandwidth, which grows much more
slowly than on-chip gate counts [2], a phenomenon known
as the off-chip memory bandwidth wall [3], [4].

RA, a distributed shared cache design, allows each address
to be cached in only one place, and therefore enjoys much
lower cache miss rates (Figure 1). Rather, its Achilles’ Heel
is spatio-temporal data locality: in many applications, a remote
access to an address cached on some core is frequently
followed by many more accesses to other addresses on that
core (Figure 2), each of which must incur a separate round-
trip message to the remote cache to keep the memory space
sequentially consistent. Although clever data placement tech-
niques (e.g., [4], [5]) can mitigate remote access costs by
placing data close to the threads that access it, this offers little
improvement for data shared among many threads: indeed, the
results in Figure 2 correspond to carefully hand-optimized data
placement and reflect true sharing levels.

To address these shortcomings, we propose the Execution
Migration Machine (EM2), a distributed shared cache architec-
ture which implements the single coherent memory abstraction
by efficiently migrating the execution thread to a remote
core whenever it needs to access data cached in that core.
Unlike CC and RA, which bring data to the computation that
needs it, EM2 takes advantage of spatio-temporal locality by
bringing computation to data, and constitutes a novel approach
to ensuring shared memory coherence.

ocean cont
2.50E+07

_

2 00E 07es
 gt
h

2.00E+07

es
se

 le
n

1.50E+07ac
ce

ru
n

or
y

g
to

1.00E+07

m
em ut
in
g

5 00E+06of
 m

tr
ib
u

5.00E+06#
o

co
nt

0.00E+00

c

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Fig. 2. The number of non-local memory accesses in the OCEAN benchmark
binned by the number of consecutive accesses to the same remote cache (run
length) highlights the weakness of RA, which pays a round-trip penalty for
each remote access. (64 x86 cores with a 16KB L1 and 64KB L2 per core,
hand-optimized data-to-cache assignment).

2

II. THE EM2 ARCHITECTURE

Whenever a thread wishes to read or write an address that
is not assigned to the local cache (a core miss), the processor
pipeline stops its execution and sends the entire execution
context (register file, TLB, etc., a total of ca. 1.5KBits on
x86 [6]) over the interconnect network to the core where the
address can be cached. In an in-order core likely to domi-
nate massive-scale multicores, this is a simple and efficient
procedure (similar to a precise exception); similarly, loading
the context into the destination core requires only atomically
filling the register file and TLB with the received context data.

What if the destination core is already running another
thread? That thread must then be evicted to another core.
Because the naı̈ve solution of “swapping” the two threads is
susceptible to deadlock, the deadlock-free EM2 architecture
requires that each core have space for at least two contexts:
a native context for the thread that originated there, and a
guest context for the threads that migrate there to access its
cache; this means that there are two register files, two TLBs,
etc., and the core multiplexes execution between the two on a
per-instruction granularity (Figure 3).

Thus, when a core C running thread T executes a memory
access for address A, it must

1) compute the home core H for A (e.g., by masking the appro-
priate bits);

2) if H = C (a core hit),
a) forward the request for A to the cache hierarchy (possibly

resulting in an off-chip DRAM access);
3) if H 6= C (a core miss),

a) interrupt the execution of the thread on C,
b) migrate the architectural state to H via the on-chip

interconnect network:
i) if H is the native core for T , place it in in the native

context slot;
ii) otherwise:

A) if the guest slot on H contains another thread T ′,
evict T ′ and migrate it to its native core N′

B) move T into the guest slot for H;
c) resume execution of T on H, requesting A from its cache

hierarchy (and potentially accessing off-chip DRAM).

Because cached data are never duplicated and always ac-
cessed from the same core, all accesses to the same address
are ordered and sequential consistency is trivially ensured.

!"#$%& '"$()"& *+"$,#"& -".(/0&
1/2#"&
34$5&

6"7!28"9&

6"7!28":&

);<=9&

);<=:&

2;<=9&

2;<=:&

>?9&

>?:&

<9&@A& <9&'A&

-".(/0&B,3C0C#".&

;%/"4)&
B$%"),8"/&

Fig. 3. An EM2 core multiplexes execution among at least two contexts,
each with its own architectural state. Additional state compared to a standard
single-issue in-order core is highlighted in gray.

III. SCALABILITY

To understand the scaling potential of the three architec-
tures, we compare the average memory latency (AML) for a
memory access under each scheme. Under CC, this is just

rate$ hit × cost$ hit
+ rate$ miss× (costprotocol + costDRAM access)

As discussed in Section I, both rate$ miss and costDRAM access
will increase as the number of cores grows, and the only
remedy is to bring down rate$ miss with larger per-core caches.

For RA, the AML can be expressed as

ratecore hit × (rate$ hit × cost$ hit
+ rate$ miss× costDRAM access)

+ ratecore miss× (costremote access + rate$ hit × cost$ hit
+ rate$ miss× costDRAM access)

Because RA does not replicate shared data, rate$ miss under
RA is lower than in CC and will not grow dramatically with
core counts, which significantly scales down the expensive off-
chip DRAM access component compared to CC. The disad-
vantage of RA is that, for highly shared addresses, consecutive
remote accesses to the same core will drive up ratecore miss.
As noted in Section I, this is unavoidable for data with high
degree of sharing, and the only avenue for improvement—
reducing the round-trip time of costremote access—is limited by
the network topologies implementable with high core counts.

Finally, for EM2, the AML becomes

ratecore hit × (rate$ hit × cost$ hit
+ rate$ miss× costDRAM access)

+ ratecore miss× (costmigration + rate$ hit × cost$ hit
+ rate$ miss× costDRAM access)

Since there is no replication, rate$ miss is the same as under
RA. But EM2 scales better: ratecore miss can be lowered
because, after a migration, subsequent memory accesses to
the same core become fast local accesses, and can be further
optimized by reordering memory accesses. Moreover, although
costmigration is higher than costremote access on a low-bandwidth
network because migrations must transfer many more bits,
each context constitutes one packet, and the network can be
trivially scaled by widening the datapaths; since migrations are
one-way, costmigration can be made as low as 1

2 costremote access.
We argue, therefore, that execution migration scales to high

core counts much better than CC and RA, and, as the core
counts per die grow into the hundreds, offers a straightforward
and scalable way to implement coherent shared memory.

REFERENCES

[1] S. Woo, M. Ohara et al., “The SPLASH-2 programs: characterization and
methodological considerations,” in ISCA, 1995.

[2] “Assembly and packaging,” International Technology Roadmap for Semi-
conductors, 2007.

[3] S. Borkar, “1000-core chips: a technology perspective,” in DAC, 2007.
[4] N. Hardavellas, M. Ferdman et al., “Reactive NUCA: near-optimal block

placement and replication in distributed caches,” in ISCA, 2009.
[5] B. Verghese, S. Devine et al., “Operating system support for improving

data locality on CC-NUMA compute servers,” SIGPLAN Not., vol. 31,
pp. 279–289, 1996.

[6] K. K. Rangan, G. Wei et al., “Thread motion: fine-grained power
management for multi-core systems,” in ISCA, 2009, pp. 302–313.

