
A Case for Instruction Subset Architectures (ISA): Guaranteeing Functionality

in High Defect Rate Technologies

Hiren D. Patel and Siddharth Garg
University of Waterloo

{hdpatel, s6garg}@uwaterloo.ca

1 Motivation

As we move towards the end of the technology roadmap, and
potentially to newer technology flavors besides conventional
CMOS, transistor defect rates are expected to increase signifi-
cantly. Till recently, industry has dealt with defects (including
both manufacturing defects and defects at run-time) using con-
servative approaches - discarding non-functioning chips at test
time and extensive guardbanding. With increasing defect rates,
however, these conservative approaches will become untenable,
resulting in prohibitive yield and performance loss.

This is the challenge that Instruction Subset Architectures
(ISA) try to address — how do we design and architect proces-
sors, either single- or multi-core, that degrade gracefully with
increasing defect rates. More specifically, how do we guaran-
tee functional correctness, possibly at the expense of a perfor-
mance penalty, in a system where each core has one or more
faulty transistors. The challenge of graceful degradation has
been extensively addressed for the memory sub-system — as
illustrated in Figure 1, spare rows/columns and error-coding
techniques can be used in caches to protect can against a rel-
atively large number of transistor failures. In the worst-case,
faulty bit cells reduce capacity and impact performance, but
do not impact functionality. However, the same cannot be
said for the core logic. For the most part, extant techniques
to deal with faulty transistors in processing cores involve fully
disabling cores. With increased defect rates, however, the like-
lihood that each core has at least one faulty transistor will
grow to a point where disabling cores will result in unaccept-
able yield loss.

Any fault-tolerant design methodology depends on an as-
sumed fault model. However, existing fault models focus on
the transistor- or gate-level abstractions, which we find are
inadequate to meet the challenges in designing gracefully de-
grading processors. Instead, in this paper, we make a case
for the use of instruction-set level fault models that
make the impact of transistor faults explicit at higher
levels of abstraction. As a first step in this direction, we
propose a simple yet powerful high-level fault model to aid in
the design of gracefully degrading processors, which we call the
instruction subset fault (IS) model. The IS fault model sets the

Figure 1: Cache yield degrades gracefully with increasing bit
faults [1]. Analogously, the instruction subset (IS) fault model
identifies the percentage of functioning instructions in the ISA
with increasing defects instead of assuming that every transis-
tor in the core logic is a single point of failure.

stage for the design of Instruction Subset Architectures (ISA)
which represent, in our view, a broad set of open challenges
spanning all stages of the design process, from circuit design
to micro-architecture, compilers and operating systems.

2 Instruction Subset Fault Model

The IS model is a simple, yet expressive fault model for pro-
cessing cores. This fault model assumes that each core can re-
liably execute only a subset of instructions from the ISA that
are designed to execute correctly. This subset of fault-free in-
structions can vary with time due to intermittent faults and,
furthermore, each core in a multi-core system could potentially
have a different subset of fault-free instructions because of the
random nature of manufacturing defects.

The IS model reflects our belief that in high-defect rate tech-
nologies, the contract between the software and hardware (pre-
viously the instruction set) must, out of necessity, be appended
with some fine-print. While the IS fault model is only a sug-
gested starting point, more expressive models that place con-
straints on temporal execution of instructions or data ranges
for operands might provide additional benefits.

This brings us to the idea of an Instruction Subset Architec-
ture (ISA) — we define an ISA to be a single- or multi-
core processor architecture that provides the user with

1



Figure 2: A multi-core processor with four cores. As shown,
each core can only reliably execute a subset of the ISA. The
goal of an ISA architecture is that from a user’s perspective,
each core can functionally execute the entire ISA.

a full-range of functionality in the presence of an IS
fault model, as illustrated in Figure 2. We believe that this
challenge can only be met by re-thinking all levels of the design
process — both bottom-up (digital circuits, computer-aided de-
sign and test methodologies) and top-down (operating systems,
compilers and micro-architecture).

Before we outline the new design challenges, it is instructive
to examine current processor architectures in the presence of
the IS fault model. As mentioned before, transistors in the
core logic are conventionally considered single points of failure,
i.e., a single fault disables the entire core. This is, however,
clearly not the case for a number of transistors in the data-
path. Faults in the execute stage are a good example — a fault
in an integer multiply unit only disables instructions that make
use of that unit. Perhaps less obvious is the fact that faults
in the decode stage are not necessarily catastrophic either —
a stuck-at fault in an op-code register will only affect half the
instructions (less if some op-codes contain don’t cares) while a
fault in an operand register would only affect instructions that
use both operands. Additionally, not all control logic faults are
single points of failure, for example, faults in the instruction
fetch stage may only disrupt conditional or unconditional jump
instructions (imagine a fault in the multiplexer that controls
the program counter in instruction fetch).

There are, of course, numerous potential single points of fail-
ure in most modern process architectures. However, we have
not yet seen any experimental studies that map transistor or
gate faults to instruction set faults although this seems to be
an almost obvious question. The fact that the IS model forces
us to ask this and, as we will see, other interesting questions,
is in our opinion, reflective of the benefits of migrating fault
models to higher levels of design abstraction.

3 Instruction Subset Architectures

The design of ISAs, i.e., architectures that guarantee a full
range of functionality in the presence of a subset of faulty
instructions with acceptable performance degradation, raises
a range of interesting and previously unaddressed challenges,
some of which we will now highlight.

C1: IS aware design methodologies and CAD tools.
Conventional design methodologies and CAD tools assume
that, from a functionality perspective, all logic gates are equal,
since gates are assumed to be single points of failure. From the
perspective of an IS fault model, however, this is not the case.
Some gates cause more instructions to be faulty than others,
and it is therefore important to incorporate this information in
all stages of design — this represents in our view, a fundamen-
tal change in CAD methodologies starting from logic synthesis
to physical design and verification tools.

C2: Test methodologies for the IS fault model. How
can we efficiently figure out which instructions are faulty and
which are not on any given core? Existing test infrastruc-
ture focuses on identifying faulty gates, not faulty instructions.
Run-time testing, either via dedicated built-in self test hard-
ware or software (or both) for the IS fault model is another
critical challenge.

C3: Micro-architecture, compiler and operating sys-
tem techniques for ISA design. C1 and C2, if success-
fully addressed, will result in cores in which the number of
working instructions degrades gracefully with increasing fail-
ure rates and test methodologies accurately identify the faulty
instructions. The critical top-down challenge is to devise new
micro-architecture, compilers and operating systems based so-
lutions that provide the user with full functionality without sig-
nificantly sacrificing performance. Potential solutions include
emulating faulty instruction using run-time recompilation tech-
niques, executing faulty instructions on neighboring cores that
do not have that instruction in their non-functioning set, using
virtualization techniques to mask the impact of faulty instruc-
tions from the user, guaranteeing a basic minimal set of func-
tioning instructions via overdesign where the minimal subset
is proven to capable of emulating any other instruction (think
ultra-reduced instruction set computing [2]).

References

[1] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe.
Multi-bit error tolerant caches using two-dimensional er-
ror coding. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, 2007.

[2] F. Mavaddat and B. Parhami. URISC: the ultimate re-
duced instruction set computer. International Journal of
Electrical Engineering Education, 1988.

2


